
ORP3 MEETING, CÁDIZ. SEPTEMBER 13-17, 2011 1

Parallel solution of dense saddle-point linear
systems arising in stochastic programming

Miles Lubin∗, Cosmin G. Petra† and Mihai Anitescu‡

Mathematics and Computer Science Division, Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439, USA

Email: {mlubin∗, petra†, anitescu‡}@mcs.anl.gov

Abstract— Although stochastic optimization problems
have many important applications, they can present serious
computational difficulties. In particular, problems with
many scenarios are often too big to solve on a single
desktop. These problems have become tractable with work
on parallel distributed-memory interior point methods,
using a scenario-based decomposition at the linear algebra
level. We extend this work by developing a novel approach
for solving, in parallel, dense saddle-point linear systems
that arise from this decomposition. The proposed approach
can be applied to a large family of dense saddle-point sys-
tems, in particular those arising in convex programming.
We apply our method to a stochastic unit commitment
problem with wind power generation, achieving over 90%
strong scaling efficiency on 1,024 cores on a problem with
57 million variables. Problems with up to 189 million
variables are solved efficiently on up to 2,048 cores. We
also describe current work on a hybrid parallel model.

Keywords— stochastic programming, parallel comput-
ing, parallel dense linear algebra, saddle-point

Preprint ANL/MCS-P1877-0411

I. INTRODUCTION

In this paper we consider two-stage stochastic convex
problems with recourse of the form

min
(

1

2
xT0Q0x0 + cT0 x0

)
+ E[G(x0, ξ)]

subject to T0x0 = b0, x0 ≥ 0,

(1)

where, for a given realization ξ̃ of the random vector
ξ, the recourse function G(x0, ξ̃) is the optimal value
of the second-stage problem (2) parameterized by the
realization ξ̃. The expectation E[·] is taken with respect
to the density function of ξ. The matrix Q0 is symmetric
positive definite, and the matrix T0 has full rank. The

∗Corresponding author.

second-stage problem is a convex quadratic program-
ming problem of the form

min
1

2
yTQy + cT y

subject to Wy = b− Tx0, y ≥ 0.
(2)

The problem is parameterized by ξ in the sense that
the random entries of the data (Q, c, T,W) form the
random vector ξ. We assume that Q is symmetric positive
semidefinite, and that the technology matrix T and
recourse matrix W have full rank for any realization of
ξ.

The convexity of the second-stage quadratic problem
implies that the recourse function is convex [3]. Also, the
recourse function G(x0, ξ̃) is nonlinear in general. There-
fore, problem (1) is a nonlinear convex optimization
problem, although in the literature problem (1) is called
a two-stage stochastic convex quadratic problem with
recourse (TCQP) [17], and we adopt this terminology.
In addition to the fact that the second-stage problem is
a QP, the term TCQP is used because any TCQP can
be reformulated as an equivalent convex QP when the
support of ξ is finite, or it can be approximated by a
convex QP when the support of ξ is a not finite, as we
show below.

Sampling methods such as Monte Carlo, Latin hy-
percube sampling, and importance sampling, etc. are
used to make the computation of the expected value
term and its derivative(s) tractable from a computational
point of view. Once a finite sample (ξ1, ξ2, . . . , ξN)
of N realizations of the random vector ξ is obtained,
the recourse term E[G(x0, ξ)] is approximated by the
average of the values G(x0, ξi), i = 1, 2, . . . , N . This
is the sample average approximation (SAA) approach,
with which one obtains a convex quadratic deterministic
approximation to the TCQP (1), which has the form
shown in equation (3).

Interior-point methods (IPMs) have been used as early
as 1988 to decompose and solve SAA problems [4].

2 ORP3 MEETING, CÁDIZ. SEPTEMBER 13-17, 2011

min
(

1

2
xT0Q0x0 + cT0 x0

)
+

1

N

N∑
i=1

(
1

2
xTi Qixi + cTi xi

)
subj to T0x0 = b0,

T1x0 + W1x1 = b1,
T2x0 + W2x2 = b2,
...

. . .
...

TNx0 + WNxN = bN ,
x0 ≥ 0, x1 ≥ 0 , x2 ≥ 0, . . . xN ≥ 0.

(3)

Fig. 1. Deterministic form of the SSA two-stage stochastic convex quadratic problem with recourse.

The SAA problems are usually extremely large and
even in the sparse case they can be solved only by
means of distributed computing. The decomposition of
the problem in the context of IPMs is usually achieved at
the linear algebra level by taking advantage of the block-
separable form of the objective function and the half-
arrow shape of the Jacobian. This special structure allows
most of the work related to IPM linear solves to be
done independently for each sample when a Schur com-
plement mechanism is used. Parallel implementations of
IPMs using the Schur complement decomposition have
been done in state-of-the-art software packages such as
OOPS [12], [13], [14] and IPOPT [24].

Recently we implemented PIPS, a parallel IPM solver
in C++ based on OOQP [10] that uses the Schur
complement decomposition to solve SAA problems. We
achieved very good strong scaling from 80 to 1000
cores (77% efficiency) on a stochastic unit commitment
problem (described in Section IV-A) with 29 million
variables. The main obstacle to solving larger instances
of this problem on a larger number of cores was a
memory usage bottleneck described in Section II that
is caused by the number of variables in the first-stage
problem. The present work removes this bottleneck by
performing the linear algebra related to the first-stage
problem in a parallel, distributed-memory MPI-based
framework.

In the context of interior-point methods applied to
SAA problems of the form (3), the linear algebra op-
erations associated with the first-stage consist of solving
symmetric indefinite systems of the form

C =

[
Q AT

A 0

]
, (4)

where Q is a dense, symmetric positive definite matrix
and A is a full-rank rectangular matrix, see Section II
for a detailed discussion. Systems with matrices of this
form are also known as saddle-point linear systems.

The size of the matrix Q can be very large; for
example, it can approach 100,000 by 100,000 in the case

of the stochastic unit commitment problem with wind
power generation presented in Section IV-A. Such large,
dense linear systems can be solved efficiently by using
existing libraries for parallel dense linear algebra such
as ScaLAPACK, PLAPACK, and Elemental. This is the
approach that we follow; however, there are two issues
that we address and solve in this paper.

The first issue is the lack of a parallel solver for
symmetric indefinite dense linear systems. Instead, one
must use an LU-based solver for general matrices, which
is twice as expensive. We overcome this drawback by
implementing a specialized Cholesky-based LDLT fac-
torization. Such factorization has been previously used in
the sparse context, see the review article by Benzi et. al.
[2], however, to our knowledge, it was not implemented
before for dense saddle-point systems in a distributed
memory environment.

The second difficulty is specific to stochastic optimiza-
tion problems and comes from assembling the distributed
saddle-point matrix (4). More specifically, C needs to be
distributed across processors as required by the particular
parallel solver, but all processors contribute to all of
the elements of the Q block. Therefore a large amount
of inter-process communication (in the form of “re-
duce” operations) is required in the assembly operation.
This can incur a significant cost, possibly greater than
the cost of factorization. We describe a technique that
yields good large-scale performance. It uses efficient
Reduce scatter operations that maximize network
bandwidth given the available memory on each node.

The paper is organized as follows. In Section II
we outline the linear algebra required by interior-point
methods for solving the stochastic SAA problems, and
we present the Schur complement-based decomposition
used to parallelize the computation of Q. In Section III
we describe the parallel dense linear solvers, in particular
Elemental, and present our LDLT factorization. We
also give the implementation details of the specialized
reduce operations we use to distribute the saddle-point

PAPER ID 0000 3

dense linear system. In Section IV we investigate and
report on the large-scale performance of our code (up to
2,048 cores). Current work on a hybrid parallel model
is decribed in Section V. Our conclusions are given in
Section VI. Note that with the exception of Section V,
this paper is a revised and shortened version of [16].

II. SCHUR COMPLEMENT DECOMPOSITION OF SAA
PROBLEMS

In this section we present the linear algebra needed to
solve convex quadratic SAA problems of the form (3) by
interior-point methods. We refer the reader to [12], [13],
[14], or [18] for more details on how the linear algebra
is derived.

The deterministic SAA problem (3) has a staircase
structure that can be exploited to produce highly paral-
lelizable linear algebra. The matrix of the linear system
that needs to be solved at each iteration of the interior-
point algorithm has an arrow shape of the form

K :=


K1 B1

. . .
...

KN BN

BT
1 . . . BT

N K0

 . (5)

Here we used the following simplifying notation,

Ki :=

[
1
N Q̄i W T

i

Wi 0

]
, K0 :=

[
Q̄0 W T

0

W0 0

]
,

Bi :=

[
0 0
Ti 0

]
, i = 1, 2, . . . , N,

where Q̄i = Qi + Di, i = 0, 1, . . . , N , with each Di

being a diagonal matrix with positive diagonal entries
occurring from the use of interior-point algorithms.

Solving linear systems of the form K∆z = r is
the main computational effort at each iteration of the
interior-point algorithm. Since K is symmetric, it can
be factorized as LDLT [11], where L is a unit lower
triangular matrix and D is a diagonal matrix. One can
easily verify that L and D have the following particular
structures,

L =


L1

. . .
LN

LN1 . . . LNN Lc

 ,

D =


D1

. . .
DN

Dc

 ,

where

LiDiL
T
i = Ki, i = 1, . . . , N, (6)

LNi = BT
i L
−T
i D−1i , i = 1 . . . , N, (7)

C = K0 −
N∑
i=1

BT
i K

−1
i Bi, (8)

LcDcL
T
c = C. (9)

We note that C defined by (8) is the Schur complement
of the first-stage Hessian block K0 in the entire Hessian
matrix K.

Let ∆zi :=
[

∆xTi ∆yTi
]T , i = 0, 1, . . . , N ,

∆z :=
[

∆zT1 . . . ∆zTN ∆zT0
]T , and let r be of the

form
[
rT1 . . . rTN rT0

]T . To solve the linear system
K∆z = r we take the following steps:

wi = L−1i ri, i = 1, . . . , N, (10)

r̃0 = r0 −
N∑
i=1

LNiwi, (11)

vi = D−1i wi, i = 1, . . . , N, (12)

w0 = L−1c r̃0, (13)

v0 = D−10 w0, (14)

∆z0 = L−1c v0, (15)

∆zi = L−Ti (vi − LNi∆z0), i = 1, . . . , N. (16)

Observe that the computations of each of the steps
(6)-(8), (10)-(12), and (16) can be done independently
for each scenario i ∈ {1, . . . , N}. This observation is
the core of the Direct Schur complement (DSC) method
which we implemented in PIPS. However, the factor-
ization (9) and steps (13)-(15) need to be performed
serially, that is identically on all processors (or only on
one processor, while the other processors are waiting).
Obviously, the serial steps create a bottleneck in the
parallel execution flow, but for problems having a small
number of first-stage variables, the bottleneck has little
negative impact on the performance of DSC method.
Unfortunately, as expected, the performance of the DSC
method is considerably affected when problems with
a large number of first-stage variables are solved. The
Preconditioned Schur Complement (PSC) method we
presented in [18] uses a stochastic preconditioner for
the Schur complement matrix C and Krylov iterative
methods for the solution of linear systems involving C to
remove most of the execution bottleneck. Consequently,
PSC approach outperforms DSC method on medium-
sized first-stage problems (several thousands variables).
However, PSC experiences a different bottleneck caused
by the insufficient memory in the case of SAA problems
with a larger number of first-stage variables (more than

4 ORP3 MEETING, CÁDIZ. SEPTEMBER 13-17, 2011

∼10,000). The memory usage bottleneck occurs because,
for such problems, the Schur complement matrix C does
not fit the memory of a single computational node.

As shown in [18], C has the following simplified form,

C =

[
Q T T

0

T0 0

]
, (17)

where Q := Q̄0 + 1
N

N∑
i=1

T T
i

(
WiQ̄

−1
i W T

i

)−1
Ti. Each

of the T T
i

(
WiQ̄

−1
i W T

i

)−1
Ti terms becomes dense even

when all the second-stage matrices are sparse. This
adverse behavior is somehow expected since, formally
speaking, two matrices are inverted and it is well known
that matrix inversion destroys sparsity. Consequently,
the (1, 1) block Q of the Schur complement matrix
C becomes dense. This is a square block of the size
of the number of first-stage variables. PSC, as well as
DSC, stores C as a dense matrix on each processor.
As we previously mentioned, this approach leads to a
memory usage bottleneck because C becomes too large
to store completely on a node for some real-life problems
with many first-stage variables (more than ∼10,000).
In this paper we propose an approach to remove the
memory bottleneck as well as the execution bottleneck.
Our technique parallelizes the first-stage linear algebra
(i.e., steps (9) and(13)-(15)) of the DSC method in a
distributed-memory computing environment.

III. FACTORIZATION AND DISTRIBUTION OF THE

DENSE SYSTEM

Here, we present our solutions to the issues arising in
the parallelization of the dense linear algebra required
in the first stage, whose details were just described in
Section II. In Section III-A we provide an overview
of existing parallel distributed-memory linear algebra
libraries, followed by our specialized factorization pro-
cedure in Section III-B. In Section III-C we describe the
procedure for assembling the distributed matrix.

A. Parallel solvers for dense linear systems

As described in Section II, the linear system we must
factorize and solve at each iteration is a symmetric
indefinite system with the following block form,

C =

[
Q AT

A 0

]
, (18)

where Q is fully dense, symmetric positive definite and
A (= T0) is sparse and of full rank. This is known as
a standard saddle-point system. In the initial versions
of PIPS, we used the symmetric indefinite solver in

LAPACK [1] (DSYSV), which is based on the Bunch-
Kaufman decomposition [7]. For the large-scale prob-
lems that PIPS is designed to solve, storing the system
entirely in local memory in order to solve it by using
LAPACK is infeasible. Our solution is to solve the
system in parallel in a distributed memory environment.

A review of the literature yielded a single paral-
lel dense symmetric indefinite solver by Strazdins and
Lewis [21]; however, the code has not been maintained
in the past 10 years and was not incorporated into any
major library. Strazdins confirmed in correspondence that
he was unaware of any other efforts. Also, we are not
aware of any solver specialized for dense saddle-point
systems, either in serial or in parallel.

Historically, the most important and most widely
used parallel dense linear algebra packages are
ScaLAPACK[5] and PLAPACK[22]. A package cur-
rently under development is Elemental[19], which claims
significant performance improvements over ScaLAPACK
and PLAPACK. We initially chose to focus on ScaLA-
PACK and Elemental; PLAPACK did not offer any
particular advantages, and one may consider Elemental
as its successor. However, due to technical limits of
ScaLAPACK, we were unable to implement our LDLT

factorization using it. The following discussion will
focus solely on Elemental, starting with a description
of its method of distributing the dense matrix across
nodes. We omit extensive discussion of ScaLAPACK for
brevity.

While all of the packages mentioned provide routines
for LU and Cholesky decompositions, none provides
routines for symmetric indefinite systems. Cholesky
decomposition is not directly applicable to our linear
system, since it is indefinite, and LU decomposition
requires double the number of operations necessary.
In light of the lack of an existing symmetric indefi-
nite solver, we developed a specialized Cholesky-based
LDLT factorization procedure that exploits saddle-point
structure of the matrix; it is described in Section III-B.

1) Elemental: Elemental is a new library intended to
replace ScaLAPACK and PLAPACK. It is under active
development.

Elemental is named after its element-cyclic matrix
storage distribution. The available processors are ar-
ranged into an np×mp processor grid, and element (i, j)
is stored on processor (i mod np, j mod mp). Each
processor has a single column-oriented local storage
buffer, where the elements are stored in their original
shape, as if there were no elements of the matrix
between them. See Figure 2 for an example.

This element-cyclic distribution obtains optimal load
balancing across nodes. One may specify a separate

PAPER ID 0000 5

Proc0,0

Distributed Matrix

Local Storage

Processor Grid

Fig. 2. Illustration of the element-cyclic distribution used in Elemental on a 2× 2 processor grid, 10× 10 matrix. The mapping is shown
between elements of the distributed matrix and the local storage on processor (0, 0). The blocks belonging to each processor are marked
with a pattern.

algorithmic blocksize with which algorithmic operations
are performed, to improve cache performance. Another
important feature of the “elemental” matrix distribution
is the ability to perform operations on arbitrary sub-
matrices. We fully exploited this feature in our special-
ized LDLT factorization.

B. Specialized Cholesky-based LDLT factorization

Although using a general LU factorization routine
to solve the linear system C given by (18) presents a
practicable solution, it is not ideal. We would expect to
be able to gain a 2x increase in performance by using an
algorithm that at least exploited the symmetric structure.
We describe below a specialized LDLT factorization
algorithm that exploits both the symmetric and the
saddle-point structure of C.

1) Algorithm: Every symmetric indefinite matrix
whose diagonal is not all zeros has a decomposition
LDLT where L is lower triangular and D is diagonal [6].
This decomposition is usually avoided in practice be-
cause of the numerical instabilities that may arise when
the elements of the diagonal of the matrix all approach
zero. Instead, a slightly modified decomposition is used,
taking D to be a block-diagonal matrix with blocks of
size 1 or 2. This is used in the Bunch-Kaufman [7] and
Bunch-Parlett [6] methods.

In the case of the saddle-point system C (18), how-
ever, because the Q block is positive definite and the
matrix A is full-rank, a LDLT factorization with D
strictly diagonal always exists. This can be seen by

writing[
Q AT

A 0

]
=[

M 0

AM−T M̃

] [
I 0
0 −I

] [
MT M−1AT

0 M̃T

]
,

(19)

where M and M̃ are lower triangular Cholesky factors
satisfying MMT = Q and M̃M̃T = AQ−1AT . These
factors necessarily exist because Q is positive definite,
and therefore AQ−1AT is positive definite as well be-
cause A has full rank.

Benzi et al. [2] note that the factorization (19) is more
efficient than Bunch-Kaufman because no pivoting is
required; in addition, it is sufficiently numerically stable
since it couples two Cholesky factorizations. The use of
this factorization may be disadvantageous in the sparse
case, because a large amount of fill-in may occur in the
factors. Obviously, this is not the case in this work since
our matrix is dense. To our knowledge, there has been
no previous attempt to solve dense saddle-point systems
in parallel by using an LDLT factorization of form (19)
or any other specialized approach.

What makes this factorization practical is that it can
be performed in-place on the distributed matrix. Let us
denote the four logical blocks of the distributed matrix
as follows:

B =

[
B00 B01

B10 B11

]
(20)

where B = C initially, that is B00 = Q,B10 = A,B01 =
AT , B11 = 0; in fact, only the lower triangle must
be filled. We perform a sequence of standard linear

6 ORP3 MEETING, CÁDIZ. SEPTEMBER 13-17, 2011

algebra operations on B, after which B contains the
lower triangular L factor. See Figure 3 for the procedure.

Specialized LDLT Procedure
In-place factorization
1. B00 ←− Cholesky(B00)
2. B10 ←− B10B

−T
00 (trsm)

3. B11 ←− (B10)(B10)
T (syrk)

4. B11 ←− Cholesky(B11)
Solving Sx = b
5. b←− L−1b (trsv)
6. b←− D−1b (ad-hoc)
7. b←− L−T b (trsv)

Fig. 3. Specialized procedure for solving the saddle-point system
S. After the factorization, the lower triangle of B contains L. The
name of the operations in standard BLAS terms is in parentheses.

In the solution phase, the trsv operation solves a
simple triangular system Zx = b or ZTx = b. Note
that D = D−1. Then, multiplication by D−1 can be
performed ad-hoc by simply negating the lower part of
the right-hand side vector.

The standard operations (Cholesky factorization, trsm
[triangular solve], and syrk [symmetric rank-k update])
are provided, in principle, by all linear algebra libraries.
However, Elemental allows these operations to be per-
formed on arbitrary sub-matrices, while ScaLAPACK,
for example, does not. For this reason we were only
able to implement our procedure using Elemental. The
implementation required just five lines of code in C++
to perform the factorization.

It can be shown (see [16]) that this algorithm requires
1
3n

3 floating point operations, where n is the size of the
full matrix C. LU decomposition requires 2

3n
3 flops, and

so we have achieved the goal of a factorization routine
that theoretically requires half the operations. Also note
that no comparisons are required in this case, unlike
both LU and general symmetric indefinite factorization
routines.

As a final observation, recall that the A block is in
reality sparse, although it has been treated as a block of
a dense matrix. We implemented it as such, but one may
be able to significantly reduce communication costs and
flops in the trsm stage by storing A as a sparse matrix on
each processor and implementing a specialized triangular
solve routine. However, since the number of rows of A
is less than the the number of rows of Q, usually much
more smaller, this would likely be a minor optimization.

2) As a saddle-point solver: We note that the method
proposed applies with only a slight modification to a

more general dense saddle-point system of the form

C =

[
Q AT

A −S

]
, (21)

where S is symmetric positive semidefinite and Q and
A are symmetric positive definite and of full rank,
respectively, as above. The only modification necessary
to the algorithm in Figure 3 is at Step 3 to include S in
the Schur complement. This saddle-point system (21) has
applications outside of constrained optimization, which
are referenced in [2].

C. Assembling the matrix

We have treated up to this point the linear system
as already being distributed across processors as re-
quired by Elemental. However, assembling the matrix
and distributing it as required can be a costly operation,
possibly more costly than the factorization itself. This
operation must be streamlined to obtain acceptable large-
scale performance.

We present a simplified version of the summation that
was more fully described in Section II. Let B refer to
the distributed matrix, partitioned as in (20). Let P be
the set of processors. The distribution operation we must
perform can be described simply as

B00 =
∑
p∈P

Mp, (22)

where Mp is calculated locally on processor p and B00

is distributed across processors. Here Mp is the local
contribution to the sum discussed in Section II, precisely
at Step (8).

In the serial case where LAPACK is used to solve the
entire first-stage system on each processor, this opera-
tion maps directly to an Allreduce in MPI. In the
distributed case, we have two important considerations
that make the distribution problem significantly more
complicated:
• Mp is too large to fit entirely in a node’s local

memory.
• Every node owns different, non-contiguous ele-

ments in B00; however, all nodes contribute to all
elements.

To address the first issue, we calculate Mp in blocks of
columns that fit in a node’s local memory. Then, repeated
communication operations are performed to “globally”
build B00 by blocks of columns.

For the second issue, we observe that the
communication pattern required maps closely to a
Reduce scatter operation in MPI, in which a large
array is “reduced” (summed) across all processors,

PAPER ID 0000 7

and then its pieces are partitioned and “scattered”
(distributed) to processors.

However, Reduce scatter requires that each pro-
cessor receive a single contiguous part of the send
buffer. Considering the distribution of the matrix across
processors, a single contiguous column of the matrix
can not be partitioned such that the elements belonging
to a given processor are in contiguous memory. Some
intermediate steps are therefore necessary.

We first present a method to distribute the entire B00

block (“full reduce”), followed by a method to distribute
only the lower triangle of B00 (“lower triangular re-
duce”). The discussions assume some familiarity with
MPI or distributed computing.

1) Full reduce: In order to apply LU decomposition,
the entire distributed matrix must be filled with the
corresponding elements, disregarding the symmetry of
the matrix. This is not the case for the LDLT procedure,
which requires only the lower triangle and is twice as
fast. Nevertheless, we compare our LDLT factorization
to LU decomposition in Section IV, so we present the
“full reduce” method that fills the entire B00 block. This
method is also a starting point for the lower triangular
procedure, described in Section III-C.2.

Figure 4 contains a high-level description of the
procedure. While it is generally straightforward, special
care is needed at some points to ensure an efficient
implementation.

As mentioned above, we build the matrix in blocks
of columns. The size of the blocks is governed by
the parameter b. This should be as large as possible
to maximize the communication bandwidth, given the
available memory on each node.

The Pack step fills the send buffer for
Reduce scatter. The send buffer must be arranged
such that the elements destined for a processor are in a
single, contiguous block, and the blocks must be ordered
according to processor number. For fast unpacking, we
also require that inside a block, the order of elements
match their order in the local matrix storage. We have
fully specified a one-to-one map between the location of
the elements in the column buffer and their location in
the send buffer, and theoretically only a permutation of
the column buffer is necessary. An in-place permutation
would have poor cache performance, so we allocate a
separate array and copy the elements into their positions.
The copy procedure must be streamlined, taking care
to avoid expensive division and modulus operations to
calculate the required positions of the elements.

Once the send buffer is filled, Reduce scatter is
called. The entries are summed across all processors, and
the result is partitioned and distributed to the receive

buffers on the desired processors. We have arranged
the elements so that they are in the correct order for
unpacking, so this step is straightforward.

2) Lower triangular reduce: For the LDLT factor-
ization procedure, we would be performing unnecessary
work by distributing the entire symmetric B00 block,
when only the lower triangle is required. Also, in initial
experiments we noticed that the communication in the
reduce step can take a significant amount of time. There-
fore, we set out to design a “lower triangular reduce”
that should take nearly exactly half the time of the
“full reduce” procedure above, excluding computing the
columns. We arrived at a procedure that can effectively
guarantee requiring only half of the communication time,
with little extra overhead.

With this goal in mind, we must fix the size b of the
send buffer as above and design a procedure that calls
Reduce scatter half the number of times. We need
to send only half the number of elements, so this is cer-
tainly possible. In a more naive approach, one might be
led to loop over fixed-sized blocks of columns as before
and send only the lower triangular elements. This ap-
proach cannot deliver the performance desired, because it
results in the same number of Reduce scatter calls
as before and so does not decrease the communication
overhead.

The solution for a fixed send buffer size is to vary the
number of columns calculated in each iteration, taking
exactly as many as whose lower triangular elements fit
in the send buffer. This number will increase with each
iteration. The calculation reduces to solving a simple
quadratic equation at each iteration.

Besides varying the number of columns at each itera-
tion, the overall procedure is the same as in Figure 4. The
Pack and Unpack operations require a small overhead
in addressing, but only in calculating offsets. Instead of
describing these in detail, we provide an illustration in
Figure 6, which indicates the operations required.

IV. NUMERICAL EXPERIMENTS

Numerical experiments were performed on the Fu-
sion cluster at Argonne National Laboratory. Each node
has 36 GB of RAM and dual quad-core Intel Xeon
2.53 Ghz CPUs, for a total of 8 cores per node. In
further discussion, we treat each core itself as a node
or processor with its own local memory. The cluster
has an Infiniband interconnect. An algorithmic blocksize
of 96 is used for Elemental, optimized by empirical
observation. Additionally, 250 MB is used for buffers
during the reduce stage.

We first describe the test problem and then present
strong and weak scaling results.

8 ORP3 MEETING, CÁDIZ. SEPTEMBER 13-17, 2011

“Full reduce” procedure
Initialization
1. Let n be the size of B00.
2. Fix buffer size b.
3. Allocate b doubles for column buffer and b doubles for send buffer.
4. Allocate recv buffer (sufficiently large).
5. step ←− b/n
Main loop
6. For i = 0 to n− 1, step
7. endCol ←− min(i+ step− 1, n− 1)
8. Compute columns i to endCol −→ column buffer
9. Pack column buffer −→ send buffer
10. MPI Reduce scatter(send buffer) −→ recv buffer
11. Unpack recv buffer −→ local matrix storage
12. End For

Fig. 4. Overall procedure for distributing the full B00 block.

Column Buffer

Send Buffer
Reduce ScatterPack Unpack

Local Matrix StorageRecv Buffer

Fig. 5. Illustration of a step of the “full reduce” procedure. The 3rd and 4th columns are sent of a 10× 10 B00 block on a 2× 2 processor
grid. Note that the local storage contains more rows and columns than displayed; only the elements belonging to B00 are shown. Dashed
lines indicate communication from other processes. In general, processors will receive more than one column, unlike shown here.

A. The test problem

We use a formulation of the stochastic unit commit-
ment problem with wind power generation in the tests
for PIPS. For brevity, we do not present the full model;
instead, we provide an overview of the problem and
the terminology used to describe it, and we direct the
interested reader to [8] for a complete presentation.

Unit commitment refers to committing power genera-
tion units to either produce electricity or remain idle. In
our problem there are two types of power units: thermal
power plants using fossil fuels and wind farms using

renewable energy. The thermal power generation units
are costly to operate, both economically and environ-
mentally. Hence, they should not be operating in large
excess of demand. Each unit has startup, shutdown, and
running costs and cannot change state instantaneously.

The stochastic component arises from considering
electricity produced by wind farms, which is highly
variable. The optimization problem is to minimize oper-
ation costs subject to satisfying the demand with some
safety margin. Solving such problems, we may realize
the economic and environmental benefits of wind power
while ensuring that it is safely integrated with the power

PAPER ID 0000 9

Column Buffer

Send Buffer
Reduce ScatterPack Unpack

Local Matrix StorageRecv Buffer

Fig. 6. Illustration of a step of the “lower triangular reduce” procedure. The 3rd and 4th columns are sent of a 10×10 B00 block on a 2×2
processor grid. Note that the local storage contains more rows and columns than displayed; only the elements belonging to B00 are shown,
and the lower triangular elements are indicated. Dashed lines indicate communication from other processes. Dots indicate the partitions of
the column-major send buffer. In the illustrated case, only two columns fit in the send buffer. Note that in general, not all processors will
receive an equal number of elements, because of the properties of the matrix distribution.

grid.
Each scenario is a possible realization of weather

patterns, which corresponds to a different amount of
electricity produced by the wind farms. These scenar-
ios are generated by simulation using the state-of-the-
art Weather Research and Forecast (WRF) model. In
the formulation proposed by [8], this is a two-stage
stochastic mixed-integer linear program with recourse,
and the problem is solved over a 24-hour timeframe
with a recourse stage to reallocate units at the end of
the period. The problem solved by PIPS has one (large)
simplification: the mixed-integer problem is relaxed to a
continuous problem. This can be considered as the root
relaxation problem in a branch-and-bound framework.
However, the problems solved are realistically sized, in
both the number of variables and the number of second-
stage scenarios.

Problems of various sizes that are used in the experi-
ments of this section are obtained by replicating a (small)
real-life unit commitment problem (10 thermal units, 12
wind farms) set up for the state of Illinois [8]. We were
forced to do this because of the lack of data for a larger
area. We mention that our implementation is not tuned
to take advantage of any special structure that may be
introduced by replications.

B. Solvers

We compare here the first-stage factorization times for
the two methods tested: LU and LDLT with Elemental.

A fixed problem size of 300 thermal units is used, and
we vary the number of processors used by PIPS. The Q
block of C is of size 23,436, and the A block has 1,224
rows. This is not an especially large first-stage problem,
and so we would expect the solver to be less efficient
with a larger number of processors. To verify this, we
include cases where only a subset of the processors is
used for factoring the matrix. See Table I.

TABLE I
FACTORIZATION TIMES. IN SOME CASES, A SUBSET OF THE TOTAL

CPUS IS USED FOR THE FACTORIZATION. VALUES ARE AVERAGES

OVER 5 ITERATIONS. INSUFFICIENT MEMORY TO RUN WITH 32
CORES(4 NODES).

Procs. Factor (sec)
Factoring LU LDLT

32 32 * *
64 64 89.18 29.94
256 256 17.68 9.78
1024 256 25.54 11.48

1024 20.04 6.71
2048 256 42.48 16.86

1024 41.43 10.81
2048 56.19 14.08

In all cases, the LDLT factorization is the fastest, and
realizes the expected 2x speed increase.

We observe that 1024 processors appears to be an
optimal number for this problem size; this is clear in the
case of 2048 total processors, where factorization time

10 ORP3 MEETING, CÁDIZ. SEPTEMBER 13-17, 2011

decreases from 256 to 1,024 and increases from 1,024 to
2,048 for all solvers. It is curious that factorization times
appear to worsen for a fixed number of factoring proces-
sors when the total number of processors is increased.
We did not have the opportunity to fully investigate this
result.

C. Reduce

The times for the full and lower triangular reduce
operations are compared in Table II. In all cases, the
lower triangular reduce takes about half the time. Note
that these times are bigger than the factorization times
themselves. Also, reducing onto a subset of processors
is slower than reducing onto all processors, because of
the load imbalance that arises from the uneven commu-
nication costs. This slowdown appears to be greater than
the possible improvement in factorization time.

TABLE II
TIME SPENT DISTRIBUTING Q BLOCK. THE OPERATION INVOLVES

SUMMING CONTRIBUTIONS FROM ALL PROCESSORS TO EACH OF

THE 549,246,096 ELEMENTS, AND SCATTERING THE ELEMENTS

TO THEIR REQUIRED PLACE IN THE DISTRIBUTED MATRIX.
VALUES ARE AVERAGES OVER 5 ITERATIONS. INSUFFICIENT

MEMORY TO RUN WITH 32 CORES.

Procs. Reduce (sec)
Factoring LU LDLT

32 32 * *
64 64 28.31 12.96
256 256 37.55 17.18
1024 256 110.45 45.21

1024 54.32 26.35
2048 256 167.73 89.50

1024 100.40 50.80
2048 82.41 43.93

The reduction step presents a difficulty for strong
scaling. With a fixed problem size, the reduce time
increases with the number of processors. This result can
be explained easily by an increase in communication
overhead. Because the lower triangular reduce grows
more slowly than the full reduce in absolute terms,
we will see that in addition to being faster, the lower
triangular reduce also provides the best strong scaling
results.

D. Strong scaling

Strong scaling is the ability to solve a fixed problem
size efficiently on an increasing number of cores. For
the fixed problem size chosen (300 thermal units), the
“backsolve” procedure to generate the columns of the

terms in the sum of the Q block (17) takes approximately
140 seconds per scenario, independently of the total
number of processors. This itself is large compared
to the reduction and factorization steps, which are the
only significant operations that are not “embarrassingly
parallel”. With 4,096 scenarios, we would expect very
good strong scaling until the point where each processor
is assigned a very small number of scenarios. This is the
exact behavior we observed. The results are reported in
Table III.

TABLE III
TOTAL WALL TIME FOR 5 INTERIOR-POINT ITERATIONS, WITH A

FIXED PROBLEM SIZE WITH 4,096 SCENARIOS, DIVIDED EVENLY

ACROSS PROCESSORS. ALL PROCESSORS USED FOR FACTORING.
EXECUTION TIME FOR 64 PROCESSORS USED AS THE BASELINE

FOR SPEEDUP AND EFFICIENCY.

Procs. Tot. Walltime Speedup
(min) (Efficiency)

LU LDLT LU LDLT

64 759.01 735.37 64 64
(100%) (100%)

256 195.62 193.12 248.3 243.7
(97.0%) (95.2%)

1024 55.76 50.99 871.1 922.9
(85.1%) (90.1%)

2048 37.9 30.48 1282.05 1534.9
(62.6%) (75.4%)

The LDLT solver has the best strong scaling, primar-
ily because of the smaller increases in reduce times. We
observe very good scaling (90%) up to 1024 processors,
where each processor is assigned four scenarios. Scaling
degrades to 75% efficiency with 2048 processors, where
each processor is assigned only two scenarios, and the
reduction and factorization steps become more signifi-
cant.

Currently, the number of processors is limited by the
total number of scenarios. This is not an unreasonable
limitation, given that the computational difficulty with
SAA problems generally arises from the large number
of scenarios. Splitting scenarios across processors is a
possibility, and could be accomplished by using parallel
sparse libraries to perform the linear algebra in the
second-stage.

E. Weak scaling

Strong scaling is more difficult on smaller problems,
and so above we used a relatively small first-stage matrix
with size 24,660. By itself, this matrix requires about 4.5
GB to store, which does not exceed the capabilities of a

PAPER ID 0000 11

 2048

 1024

 256

 64
 2048 1024 256 64

S
p

e
e

d
u

p

Processors

Total Walltime

Linear Scaling
LDL^T
LU

Fig. 7. Plot of strong scaling results. See Table III for numerical
values.

modern computer; in the tests above, most of the memory
on each node was in fact used to store the data associated
with the scenarios. Here, we present weak scaling results,
solving larger problems with a fixed number of proces-
sors. We solve the unit commitment problem described
earlier, now with 640 and 1,000 thermal units on a fixed
1,024 processors with 4,096 scenarios. Table IV contains
the average reduce and factorization times, and Table V
contains the average iteration times. Because of the very
large CPU time requirements, we ran only three interior-
point iterations for 640 and 1,000 thermal units (with 5
iterations for 300).

TABLE IV
FACTORIZATION AND REDUCE TIMES: 1,024 PROCESSORS WITH

ALL USED FOR FACTORIZATION, 4,096 SCENARIOS.

Thermal 1st Stage Size Factor (Sec.) Reduce (Sec.)
Units (Q+A) LU LDLT LU LDLT

300 23436+1224 20.04 6.71 54.32 26.35
640 49956+2584 83.24 36.77 256.95 128.59
1000 78030+4024 263.53 90.82 565.36 248.22

Both the factorization and reduce times for LDLT

continue to be about half of the times for LU . These
are promising weak scaling results. The reduce times
scale quadratically with the size of the Q block, since the
operation is a function of the number of elements. The
factorization time should scale with the cube of the size
of the first-stage matrix; but as the matrix size increases,
the factorization routines become more efficient, and so
we observe less than cubic scaling at these problem sizes.
The matrix of the largest problem has a size of over
82,000, which would take approximately 50 GB to store,

TABLE V
AVERAGE ITERATION TIMES AND “BACKSOLVE” TIMES PER

SECOND-STAGE SCENARIO: 1,024 PROCESSORS WITH ALL USED

FOR FACTORIZATION; 4,096 SCENARIOS.

Thermal Total Variables Per Scenario Min./Iter.
Units Vars. Sec. LU LDLT

300 57,677,508 14,076 139.55 11.15 10.19
640 121,764,108 29,716 689.35 53.49 50.44
1000 189,620,508 46,276 1711.29 132.72 122.74

and the LDLT routine factors it in only 90 seconds. This
translates to over two teraFLOPS of performance (20%
of theoretical peak of the system). Large matrices that
would be very difficult, if not impossible, to solve in
serial present no problem to solve efficiently in parallel.

None of these problems could have been solved pre-
viously by PIPS using LAPACK to factor the dense
matrices. Problems of this size are real-life problems.
For example, 1,000 thermal units and 1,200 wind farms
covers the entire Midwest region of the United States.
To our knowledge, SAA problems with nearly 80,000
first-stage variables have not been previously solved.

V. CURRENT WORK: HYBRID MODEL

We describe in this section our current work on PIPS.
In the standard MPI distributed-memory model, every
core on every computing node runs an MPI process.
A node with 8 cores would have 8 MPI processes,
and memory can not be shared across the processes.
This ignores cache performance increases that could be
gained by having multiple cores work collaboratively
on the same data; in MPI, data must be sent between
processes in explicitly constructed messages. In a hybrid
model, one MPI process runs per processor, which in
turn uses threads across its local cores. The hybrid model
has become increasingly important in high performance
computing, and in the context of optimization has been
successfully implemented in OOPS where it showed
improved performance over a pure MPI model in an
application of parallel interior point methods to Support
Vector Machines [23].

In PIPS, there is another motivation for using a hybrid
model. The current design limits the number of scenarios
to a minimum of one per core. In a hybrid model, one
would be limited instead to one scenario per node. This
means, for example, on a system with four cores per
node, we would be able to use four times the number
of nodes for a fixed number of scenarios. Conversely,
we could solve problems with very large second stage

12 ORP3 MEETING, CÁDIZ. SEPTEMBER 13-17, 2011

scenarios which use an entire node’s local memory. Such
problems arise, for example, when network constraints
are integrated into the unit commitment formulation
described in Section IV-A.

We are currently working to implement the hybrid
model in PIPS on the Blue Gene/P system at Argonne
National Laboratory. The overall design of PIPS remains
the same. However, the local linear algebra operations
performed within an MPI process must now be multi-
threaded. For the dense linear algebra, Elemental already
has this capability. For the sparse linear algebra, which
is used for the “backsolve” operations with the second
stage scenario matrices, we had been using the MA57[9]
library, which does not have multithreaded capabilities.
As a replacement, we have chosen to use WSMP[15].
Other libraries with multithreaded capabilities include
PARDISO[20]; however, PARDISO is not available on
the Blue Gene/P architecture.

In initial tests, we achieved 95% strong scaling effi-
ciency from 1,024 cores to 4,096 cores (256 nodes to
1,024 nodes) on a problem with 200 thermal units and
2,048 scenarios (19 million total variables), a signifi-
cantly smaller problem than the one solved in Section
IV-D. We cannot report further results, as the code is
still under active development.

VI. CONCLUSIONS

We presented a specialized LDLT factorization pro-
cedure for solving dense saddle-point linear systems
in parallel. In numerical experiments, this procedure
obtains the desired 2x increase in performance over a
general LU factorization. Our factorization applies to
an entire class of saddle-point systems and requires
only five lines of C++ code to implement using an
actively maintained parallel dense linear algebra library,
Elemental. Currently, it is the only such procedure
available. For saddle-point systems, it is likely more
efficient than general parallel dense symmetric-indefinite
solvers, if any are implemented in the future, because
no comparisons or pivoting is required. The procedure
scales well to very large systems, and performance will
improve with improvements in the Elemental core.

We also presented an efficient method to assemble
the matrix in the context of a parallel solver for two-
stage stochastic optimization problems with recourse
using the SAA approach. These problems are highly
parallelizable by distributing the calculation for the sec-
ond stage scenarios, but one must also solve a large
dense linear system in the first stage variables. This
work demonstrated how to parallelize solving this system
as well. The overhead of parallelization arises in the

assembly phase of the matrix, and we were able to reduce
this cost by half by assembling only the lower triangle,
significantly increasing the strong scaling efficiency. We
hope to further improve the performance and capability
of PIPS with our work on a hybrid model.

By parallelizing the dense factorization, we removed
the memory usage bottleneck that prevented PIPS from
solving problems with a large number of first-stage
variables. Now, PIPS is capable of solving very large
real-life problems. This is an important problem for the
integration of wind-generated power with the electricity
grid, and this work is a necessary step forward in order
to be able to solve it and similarly sized large-scale
stochastic optimization problems.

ACKNOWLEDGMENTS

We are grateful to Jack Poulson, the main developer
of Elemental, for his guidance in both implementation
and development of the factorization procedure, and to
Peter Strazdins for informative discussions. This work
was supported by the U.S. Department of Energy under
contract DE-AC02-06CH11357.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed.
Philadelphia, PA,: Society for Industrial and Applied Mathemat-
ics, 1999.

[2] M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of
saddle point problems,” ACTA NUMERICA, vol. 14, pp. 1–137,
2005.

[3] J. R. Birge and F. Louveaux, Introduction to stochastic pro-
gramming. New York,: Springer-Verlag, 1997.

[4] J. R. Birge and L. Qi, “Computing block-angular Karmarkar
projections with applications to stochastic programming,” Man-
age. Sci., vol. 34, no. 12, pp. 1472–1479, 1988.

[5] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users’
Guide. Philadelphia, PA,: Society for Industrial and Applied
Mathematics, 1997.

[6] J. R. Bunch and B. N. Parlett, “Direct methods for solving
symmetric indefinite systems of linear equations,” SIAM Journal
on Numerical Analysis, vol. 8, no. 4, pp. 639–655, Dec. 1971.

[7] J. R. Bunch and L. Kaufman, “Some stable methods for
calculating inertia and solving symmetric linear systems,” Math-
ematics of Computation, vol. 31, no. 137, pp. 163–179, 1977.

[8] E. M. Constantinescu, V. M. Zavala, M. Rocklin, S. Lee,
and M. Anitescu, “A computational framework for uncertainty
quantification and stochastic optimization in unit commitment
with wind power generation,” IEEE Transactions on Power
Systems, in press, 2010.

[9] I. S. Duff, “Ma57—a code for the solution of sparse symmetric
definite and indefinite systems,” ACM Trans. Math. Softw.,
vol. 30, no. 2, pp. 118–144, 2004.

[10] E. M. Gertz and S. J. Wright, “Object-oriented software for
quadratic programming,” ACM Transactions on Mathematical
Software, vol. 29, no. 1, pp. 58–81, 2003.

PAPER ID 0000 13

[11] G. H. Golub and C. F. Van Loan, Matrix Computations (Johns
Hopkins Studies in Mathematical Sciences)(3rd Edition), 3rd ed.
The Johns Hopkins University Press, October 1996.

[12] J. Gondzio and A. Grothey, “Parallel interior-point solver for
structured quadratic programs: Application to financial planning
problems,” Annals of Operations Research, vol. 152, no. 1, pp.
319–339, July 2007.

[13] ——, “Exploiting structure in parallel implementation of inte-
rior point methods for optimization,” Computational Manage-
ment Science, vol. 6, no. 2, pp. 135–160, May 2009.

[14] J. Gondzio and R. Sarkissian, “Parallel interior point solver
for structured linear programs,” Mathematical Programming,
vol. 96, pp. 561–584, 2003.

[15] A. Gupta, “Wsmp: Watson sparse matrix package,” IBM Re-
search Report, Tech. Rep., 2000.

[16] M. Lubin, C. Petra, and M. Anitescu, “On the parallel solution
of dense saddle-point linear systems arising in stochastic pro-
gramming,” Preprint ANL/MCS-P1798-1010, Argonne National
Laboratory, Tech. Rep., 2010.

[17] S. Mehrotra and M. G. Ozevin, “Decomposition based interior
point methods for two-stage stochastic convex quadratic pro-
grams with recourse,” Oper. Res., vol. 57, no. 4, pp. 964–974,
2009.

[18] C. G. Petra and M. Anitescu, “A preconditioning technique for
Schur complement systems arising in stochastic optimization,”
Preprint ANL/MCS-P1748-0510, Argonne National Laboratory,
Tech. Rep., 2010.

[19] J. Poulson, B. Marker, and R. A. van de Geijn, “Elemental: A
new framework for distributed memory dense matrix compu-
tations (flame working note #44),” Institute for Computational
Engineering and Sciences, The University of Texas at Austin,
Tech. Rep., June 2010.

[20] O. Schenk and L. Gartner, “On fast factorization pivoting
methods for symmetric indefinite systems,” Elec. Trans. Numer.
Anal., vol. 23, pp. 158–179, 2006.

[21] P. E. Strazdins and J. G. Lewis, “An efficient and stable
method for parallel factorization of dense symmetric indefinite
matrices,” The 5th International Conference and Exhibition on
High Performance Computing in the Asia-Pacific Region (HPC
Asia 2001), Sept. 2001.

[22] R. A. van de Geijn, Using PLAPACK. MIT Press, March 1997.
[23] K. Woodsend and J. Gondzio, “Hybrid mpi/openmp parallel

linear support vector machine training,” J. Mach. Learn. Res.,
vol. 10, pp. 1937–1953, December 2009.

[24] V. M. Zavala, C. D. Laird, and L. T. Biegler, “Interior-point
decomposition approaches for parallel solution of large-scale
nonlinear parameter estimation problems,” Chemical Engineer-
ing Science, vol. 63, no. 19, pp. 4834–4845, 2008.

(To be removed before publication) The submitted manuscript has been
created by UChicago Argonne, LLC, Operator of Argonne National
Laboratory (Argonne). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government for itself, and others acting on its
behalf, a paid-up, nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to the
public, and perform publicly and display publicly, by or on behalf of
the Government.

